Revisiting hua-marcus-bellman-ando inequalities on contractive matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity of Operator-matrices of Hua-type

Let Aj (j = 1, 2, . . . , n) be strict contractions on a Hilbert space. We study an n× n operator-matrix: Hn(A1, A2, . . . , An) = [(I −AjAi)]i,j=1. For the case n = 2, Hua [Inequalities involving determinants, Acta Math. Sinica, 5 (1955), 463–470 (in Chinese)] proved positivity, i.e., positive semidefiniteness of H2(A1, A2). This is, however, not always true for n = 3. First we generalize a kn...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Nonlinear Dynamic Inequalities of Gronwall-Bellman Type on Time Scales

The main aim of this paper is to establish some new explicit bounds of solutions of a certain class of nonlinear dynamic inequalities (with and without delays) of Gronwall-Bellman type on a time scale T which is unbounded above. These on the one hand generalize and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of delay dynami...

متن کامل

Fractional difference inequalities of Gronwall – Bellman type

Discrete inequalities, in particular the discrete analogues of the Gronwall–Bellman inequality, have been extensively used in the analysis of finite difference equations. The aim of the present paper is to establish some fractional difference inequalities of Gronwall–Bellman type which provide explicit bounds for the solutions of fractional difference equations.

متن کامل

Approximate Dynamic Programming via Iterated Bellman Inequalities

In this paper we introduce new methods for finding functions that lower bound the value function of a stochastic control problem, using an iterated form of the Bellman inequality. Our method is based on solving linear or semidefinite programs, and produces both a bound on the optimal objective, as well as a suboptimal policy that appears to works very well. These results extend and improve boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2009

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.11.011